
Towards a Portable Cluster Computing Environment
Supporting Single System Image

Tatsuya Asazuy Bernady O. Apduhanz Itsujiro Aritaz

Department of Artificial Intelligence
Kyushu Institute of Technology

Iizuka, 820-8502 Japan
y asazu@mickey.ai.kyutech.ac.jp
z fbob, aritag@ai.kyutech.ac.jp

Abstract

Cluster computing environments, e.g. DSE, NOW, created out
of commodity-off-the-shelf computer and networking hardware
have gained wide popularity as a cost-effective solution to high
performance computing. Considering the recent trends in cluster
computing technology and for practical usability, the need to pro-
vide a single-system image is important where users can freely use
these cluster computing systems without knowing the underlying
system architecture.

In this paper, we cite some related works and present our ap-
proach. We describe the modified software organization of DSE,
discuss the experiments and results of parallel applications on
different UNIX-based platforms. Finally, we give our concluding
remarks and future directions

1. Introduction

The research and development of network-based or cluster
computing systems has burgeoned in recent years. Cluster com-
puting environments constructed fromcommodity-off-the-shelf
(COTS) hardware, i.e., workstations or PCs, connected by high-
speed networks, have gained wide popularity as a compelling al-
ternative to expensive parallel supercomputers or multiprocessors
with highly customized hardware and software, establishing the
paradigm of commodity supercomputing [1].

This significant low cost increases the availability of high per-
formance computing platforms whose design enables an easy up-
grade to improvements in computers and networking hardware
technology. Aside from favorable price/performance ratio, clus-
ter computing environments have a large choice of hardware and
software vendors, as well as a number of operating systems and
development environments.

A recent trend in cluster computing environments is to pro-
vide the popularly knownSingle-System Image(SSI) that would
allow all nodes to offer a unified access to resources [2]. The no-
tion of single-system image which can be offered at the hardware,
operating system, applications and subsystem layers promises to
provide a number of advantages as well as services to users.

In line with these advances in cluster computing technology
motivated further by improvement of DSE (Distributed Super-
computing Environment), a cluster of workstations was developed

in our laboratory [4]. The goal of this work is to study the intrica-
cies of various UNIX-based operating systems to provide support
for DSE to offer an adequate degree of portability, architecture
and operating system independence for shared memory parallel
processing on UNIX-based cluster environments without compro-
mising efficiency for generality. Likewise, we attempt to expose
the effects of these operating systems on the system performance,
and how this is reflected in the behavior of applications perfor-
mance. Furthermore, this study is aimed at gaining some insights
into the limitations and potential of UNIX-based OS functions to
reduce the time to implement and develop practical single-system
image functionalities.

The following Sections are organized as follows: Section 2
describes some related works and our approach. Section 3 gives
an overview of DSE and describes its modified software organi-
zation. Section 4 describes the experiment set-up, experiments,
and results. Section 5 gives the summary and concluding remarks
with a discussion on the implications of the results, and cites fu-
ture works.

2. Related Works

PVM [5] and MPI [6] are development environments which
provided degree of portability, architecture and operating system
independence for message passing systems. GLUnix and Solaris
MC are among those that provide a single-system image at the
operating system level [2]. GLUnix is a global layer unix at the
topmost layer in the existing OS of the heterogeneous computers
in the network which provide the abstraction of a single, server-
less file system [7]. Likewise, Solaris MC is built as a global-
ization layer on top of the existing kernel preserving the existing
Solaris ABI/API and runs existing Solaris 2.x applications and de-
vice drivers without modification. Solaris MC provides a single-
system image, making the cluster appear like a single machine to
the user, to applications, and to the network [8].

We envisioned to provide similar functions to the above-
mentioned works, but will significantly differ on targeted goals.
Our goal is to develop a portable shared memory based cluster
computing environment with SSI support. We shall utilize the
compatible functions of UNIX-based OS to reduce the develop-
ment time and effort to implement practical and flexible SSI func-
tions.



Interconnection Network

PU LM

PE

GM

PU LM

PE

GM

Processor
Unit

Local
Memory

Processor Element

Global
Memory

Distributed Shared Memory, DSM

Figure 1. The DSE System Model

3. DSE and Software Organization

DSE is a shared memory based cluster computing environment
developed on a network of SunOS-based workstations connected
by a local area network, shown in Figure 1. The DSE software
mainly consist of two components: the DSE kernel and DSE pro-
cess [4]. An earlier attempt to implement the DSE kernel and DSE
process into one UNIX process to reduce the communication cost
in between has decreased the portability and modularity of DSE,
and require dynamic linking. Likewise, the attempt to speed up
communication processing by optimizing TCP/IP processing has
lead to more dependency on the network protocols [9].

3.1. New DSE Software Organization

The overhead due to OS system calls and protocol process-
ing seems inevitable since DSE is implemented at the UNIX user
level. Also, since DSE adapted the shared memory model, com-
munication frequency for fine-grain granularity is high. And so
it is of great importance to reduce this overhead. Eventually, we
re-evaluated DSE and improved its software organization in an
effort to provide portability and more modularity to facilitate sys-
tem improvement, shown in Figure 2.

The notion of putting the DSE kernel and DSE process into
one UNIX process is again adapted but takes a new implementa-
tion approach, i.e., without using dynamic linking, and implement
the DSE kernel as a parallel processing library, shown in Figure
3. Likewise, the implementation of DSE kernel and the DSE pro-
cess into one UNIX process is achieved in the parallel application
by linking this parallel processing library with the parallel API
library.

This implementation method simplifies the system composi-
tion, does not directly use dynamic loading, and thus improves
modularity. Moreover, we utilized the asynchronous I/O mode
interruption in context switching of DSE kernel and the DSE pro-
cess, as was used in older DSE implementation.

The improved system modularity provides the feasibility of
using multi-threading technique, eliminates dependency on a spe-
cific communication protocol which will facilitate exploring and
utilizing the raw performance of high-speed networks.

4. Experiments and Results

In this Section, we evaluate the performance of the improved
DSE with parallel applications, e.g. Gauss-Seidel Method, DCT-
II, Othello and Knight’s Tour Games, on three platforms, shown
in Table 1.

Parallel Processing Engine (DSE kernel)

Parallel Processing Library

Parallel Process (DSE process)

Parallel API Library

Parallel Application Object

Ethernet

Parallel Application (UNIX process)

UNIX kernel

Figure 2. The DSE Software Organization

message exchange mechanism

parallel processing mechanism

Local Area Network

message exchange module

Parallel Application Programming Interface Library

message analyze module

message create module

Parallel Processing Library
requestresponse

global memory access

communication to other nodes

message send request
(to other nodes)

message receive
(from other nodes)

parallel process invocation/termination
message to
own node

response to
other nodes

parallel process management module

global memory management module

Figure 3. The Parallel Processing Library

4.1. Gauss-Seidel Method

SunOS over Sun Workstations
The dimension of the simultaneous equation varied from 8 to

192. Figure 4 shows the execution time as the number of proces-
sors is increased. Figure 5 shows higher speed-up rates with 4 pro-
cessors and slows down with greater number of processors. This
graph can be divided into two. The speed-up rate decreases when
N -dimension is 8, 16, and 32, while it shows improvement with 4
or 6 processors whenN -dimension is 64 or more, and decreases
thereafter. In the former case, this implies that withN -dimension,
efficient parallel processing cannot be obtained. While in the lat-
ter case, the speed-up rate improved when processors are 4 or 6,
because the problem size is large.

The experiment’s environment can be cited as one of the rea-
sons why the speed-up did not improve with more than 4 (or 6)
processors. Table 1 shows the actual number of computers (Sparc-
Station10) we utilized in this experiment. A virtual cluster envi-
ronment is constructed by starting two or more DSE kernels on



Table 1. Experiments environments

Machine OS
Platform 1 Sun SparcStation10� 6 SunOS 4.1.4-JL
Platform 2 RS/6000� 8 AIX 4.1.4
Platform 3 PC-AT (PentiumII 450MHz)� 4 GNU/Linux (kernel 2.1.106)

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processor

SparcStation10 / SunOS 4.1.4

’192’’64’
’160’’32’
’128’’16’
’96’’8’

Figure 4. Gauss-Seidel Method on SunOS over
SparcStation10

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
et

 ra
tio

number of processors

SparcStation10 / SunOS 4.1.4

’192’’64’
’160’’32’
’128’’16’

’96’’8’

Figure 5. Speed-up of Gauss-Seidel Method on
SunOS over SparcStation10

0

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

RS/6000 / AIX 4.1.4

’256’’128’
’224’’96’
’192’’64’
’160’’32’

Figure 6. Gauss-Seidel Method on AIX over
RS/6000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
en

t r
at

io

number of processors

RS/6000 / AIX 4.1.4

’256’’128’
’224’’96’
’192’’64’
’160’’32’

Figure 7. Speed-up of Gauss-Seidel Method on
AIX over RS/6000

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

PentiumII 450MHz / Linux 2.1.106

’256’’128’
’224’’96’
’192’’64’
’160’’32’

Figure 8. Gauss-Seidel Method on Linux over
PC-AT

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
en

t r
at

io

number of processors

PentiumII 450MHz / Linux 2.1.106

’224’’96’
’256’’128’

’192’’64’
’160’’32’

Figure 9. Speed-up of Gauss-Seidel Method on
Linux over PC-AT



each computer when the required number of processors is more
than six. For example, two DSE kernels start on each computer
when the number of processors is 12. Therefore, when starting
two or more DSE kernels on one machine, the machine load in-
creases in proportion to this number. This causes the decrease in
performance when the number of processors exceeds six.

AIX over IBM RS/6000 and Linux over PC-AT
The same performance patterns were observed when exper-

iments (withN -dimension from 32 to 256) were conducted on
AIX over IBM RS/6000 and Linux over PC-AT Pentium II plat-
forms. These are shown in Figures 6, 7, 8, and 9, respectively.

4.2. DCT-II

Discrete Cosine Transformation-Two Dimension (DCT-II) is
an image compression method in which the source image is di-
vided into some independent partial processing, and every pixel
block ofN �N can be processed in parallel.

SunOS over Sun SparcStation10
Figure 10 shows the result of performing DCT-II on an image

of size 256�256 pixel, with block size varied from 8�8, 16�16,
32�32, 64�64 at 65% compression rate. Here the sequential pro-
cessing is executed with one processor and parallel processing is
executed with two or more processors.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

SparcStation10 / SunOS 4.1.499.75

’64x64’
’32x32’
’16x16’

’8x8’

Figure 10. DCT-II on SunOS over SparcSta-
tion10

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
en

t r
at

io

numer of processors

SparcStation10 / SunOS 4.1.4

1

’64x64’
’32x32’
’16x16’

’8x8’

Figure 11. Speed-up of DCT-II on SunOS over
SparcStation10

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

RS/6000 / AIX 4.1.423.67

’64x64’
’32x32’
’16x16’

’8x8’

Figure 12. DCT-II on AIX over RS/6000

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
en

t r
at

io

number of processors

RS/6000 / AIX 4.1.4

1

’64x64’
’32x32’
’16x16’

’8x8’

Figure 13. Speed-up of DCT-II on AIX over
RS/6000

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

PentiumII 450MHz / Linux 2.1.1067.62

’64x64’
’32x32’
’16x16’

’8x8’

Figure 14. DCT-II on Linux over PC-AT

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18

sp
ee

d 
im

pr
ov

em
en

t r
at

io

number of processors

PentiumII 450MHz / Linux 2.1.106

’64x64’
’32x32’
’16x16’

’8x8’

Figure 15. Speed-up of DCT-II on Linux over
PC-AT



Likewise, Figure 11 shows the speed-up ratio with respect to
sequential processing. It can be observed that speed-up improves
in all block sizes when the number of processors is increased ex-
cept in block size 8. This can be attributed to the small computa-
tion granularity and longer communication processing time with
block size 8. Decrease in communication frequency and increase
in block size (16, 32, 64) exhibits good speed-up ratio.

AIX over IBM RS/6000 and Linux over PC-AT
Similar performance behaviors were observed, shown in Fig-

ures 12, 13, 14, 15, when the same DCT-II experiments were con-
ducted on AIX over IBM RS/6000 and Linux over PC-AT Pentiu-
mII machines, respectively.

4.3. Othello Game

The Othello game is a typical search problem application com-
mon in artificial intelligence research.

SunOS over Sun SparcStation10
In this experiment, we verify the execution speed of the Oth-

ello game written in parallel program at different depths. In Fig-
ure 16 with depths 3, 4, and 5, no speed-up improvement is ob-
served due to the influence of communication frequency as the
number of processors is increased. However with higher depths,

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
im

pr
ov

em
en

t r
at

io

number of processors

SparcStation10/SunOS 4.1.4

’Depth8’
’Depth7’
’Depth6’
’Depth5’
’Depth4’
’Depth3’

Figure 16. Speed-up of Othello Game on
SunOS over SparcStation10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
im

pr
ov

em
en

t r
at

io

number of processor

RS/6000 / AIX 4.1.4

’Depth8’
’Depth7’
’Depth6’
’Depth5’
’Depth4’
’Depth3’

Figure 17. Speed-up of Othello Game on AIX
over RS/6000

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
im

pr
ov

em
en

t r
at

io

numbe of processors

PentiumII 450MHz / Linux 2.1.106

’Depth8’
’Depth7’
’Depth6’
’Depth5’
’Depth4’
’Depth3’

Figure 18. Speed-up of Othello Game on Linux
over PC-AT

speed-up improved where the effect of parallelism can be ob-
served.

AIX over IBM RS/6000 and Linux over PC-AT
Similar performance patterns were observed, as shown in Fig-

ures 17 and 18, when the same Othello game experiments were
conducted on AIX over IBM RS/6000 and Linux over PC-AT
PentiumII machines, respectively.

4.4. Knight's Tour Problem

Knight’s Tour problem is also a search problem whose task is
to find the route which a knight passes all masses on the surface
of anN �N chess board only once.

SunOS over Sun SparcStation10
The purpose of this experiment is to investigate the influence

on the parallel program execution when the number of processors
is increased with varying computation granularity. Here, the re-
lation between the computation granularity and execution speed
is examined by changing the computation granularity in the chess
board of 5�5.

In Figure 19, we observed that the case of 80 jobs is most effi-
cient while the case of 648 jobs is the least efficient. In the case of
256 and 648 jobs, the execution speed improves until the number
of processors becomes 6, but the speed decreases proportionately
as the number of processors exceeds 6. This decrease can be at-
tributed to the large number of divisions in the problem where
communication frequency is also large. Moreover, the experi-
ment environment, like the bus type Ethernet where occurrence
of packet collision increases when communication frequency be-
tween nodes increases. The execution speed does not improved
in the case of 26 jobs which can be due to the small number of
divisions of the problem even with increase on the number of pro-
cessors. In the case of 80 jobs, the execution speed improves
although it tends to stay constant as the number of processors is
increased from 8 to 16.

AIX over IBM RS/6000 and Linux over PC-AT
Similar performance patterns were observed, shown in Figures

20 and 20, when the same Knight’s Tour experiments were con-
ducted on AIX over IBM RS/6000 and Linux over PC-AT Pentiu-
mII machines, respectively.



0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

SparcStation10 / SunOS 4.1.4

number of processors

’648_Jobs’
’256_Jobs’

’80_Jobs’
’26_Jobs’

Figure 19. Knight’s Tour Problem on SunOS
over SparcStation10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

RS/6000 / AIX 4.1.4

’648_Jobs’
’256_Jobs’
’80_Jobs’
’26_Jobs’

Figure 20. Knight’s Tour Problem on AIX over
RS/6000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of processors

PentiumII 450MHz / Linux 2.1.106

’648_Jobs’
’256_Jobs’
’80_Jobs’
’26_Jobs’

Figure 21. Knight’s Tour Problem on Linux over
PC-AT

5. Concluding Remarks

In this paper, we presented the modified DSE software or-
ganization which provides more modularity to reduce modules’
improvement time, and portability for wider usability. We per-
formed some parallel applications on different UNIX-based clus-
ter environments with different problem sizes and number of pro-
cessors. With the modified DSE software organization, experi-
ment results reveal substantial enhancement to DSE system per-

formance (Note: Due to space limitation, performance of older
versions can be found in [3],[4],[9]). Furthermore, the results
show similar performance patterns in all environments exhibiting
scalability and ensuring portability.

This is a work in progress and we plan more exploration and
study of the intricacies of UNIX-based operating systems. And to
carry out experiments on other UNIX-based platforms in order to
further assess the portability function and gain substantial knowl-
edge as to how to efficiently realize a portable cluster computing
environment with single-system image support.

References

[1] Buyya, R., “Cluster Computing: The Commodity Super-
computing”,Journal of Software - Practice and Experience,
John Wiley & Sons, Inc., January 1999.

[2] Buyya, R., “Single System Image: Need, Approaches, and
Supporting HPC Systems”,Proc. Fourth International Con-
ference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’97), Las Vegas, Nevada, USA,
CSREA Press, 1997.

[3] B.O. Apduhan, T. Sueyoshi, Y. Namiuchi, T. Tezuka,
I. Arita, T. Fujiki, “Experiments and Analysis of Dis-
tributed Supercomputing in a Distributed Workstation En-
vironment”, SUPERCOMPUTER, ASFRA bv, Edam, The
Netherlands, Vol. VIII, No. 6, pp. 90-100, November 1991.

[4] T. Tezuka, K. Ryokai, B.O. Apduhan, and T. Sueyoshi, “Im-
plementation and Evaluation of a Distributed Supercomput-
ing Environment on a Cluster of Workstations”,Proc. of
1992 International Conference on Parallel and Distributed
Systems, pp. 58-65, 1992.

[5] Geist, A., et al, “PVM Parallel Virtual Machine - A User’s
Guide and Tutorial for Networked Parallel Computing”,The
MIT Press, 1994.

[6] MPI Forum, “MPI: A Message-Passing Interface Standard”,
International Journal of Supercomputer Applications and
High Performance Computing, Vol. 8, 1994.

[7] Ghormley, D.P., et al, “GLUnix: A Global Layer Unix for
a Network of Workstations”,Journal of Software - Practice
and Experience. (To appear)

[8] Khalidi, Y.A., et al, “Solaris MC: A Multi Computer OS”,
Proc. 1996 USENIX Technical Conference, pp. 191-203,
San Diego, CA, January 22-26, 1996.

[9] K. Ryokai, T. Tezuka, B.O. Apduhan, and T. Sueyoshi, “Im-
provement of Communication Processing Using Thread and
Signal in a High-Performance Computing Environment on
a Cluster of Workstations”,Proc. of 8th International Joint
Workshop on Computer Communication, pp.G-4-2-1� G-
4-2-8, 1993.

[10] D.E. Culler, et al, “Parallel Computing on the Berkeley
NOW”, Proc. 9th Joint Symposium on Parallel Processing,
1997.


